Distributed Transmission — FCC Enabling Rules

A Presentation for Federal Communications Commission Staff
October 24, 2005

S. Merrill Weiss / Merrill Weiss Group LC

Consultants in Electronic Media Technology / Management

Agenda

- ✓ Distributed Transmission (DTx) Systems
- ✓ Benefits of Distributed Transmission
- ✓ Background of Distributed Transmission
- ✓ Broadcaster Support
- ✓ Prerequisites for DTx Operation
- ✓ System Examples
- ✓ Enabling FCC Rules
- ✓ Conclusions

Distributed Transmission Systems

- ✓ Multiple Transmitters Covering an Area (SFN)
 - ✓ On-Channel Repeaters (successor to "Boosters")
 - ✓ Distributed Transmission
- ✓ Variety of Purposes
 - ✓ Gap Fillers (Filling in Shadows)
 - ✓ Service Maximization (Extending Service)
 - ✓ Creating Stronger Signals (Indoor Reception)
 - ✓ Transmitter Diversity (Helps Indoor Reception & New Techniques)

Benefits of Distributed Xmsn

- ✓ Spectrum Efficiency
 - ✓ Like Translators, But Without Another Channel
- ✓ Stronger Signals, Less Interference
 - ✓ Shorter Distances Need Less Fade Margin
 - ✓ Greatest Power Needed for "Last Mile"
 - ✓ Shorter Interference Zones
 - ✓ More Uniform Signal Levels

Benefits of Distributed Xmsn (2)

- ✓ Tests Show More Signal Power Is Needed
 - ✓ NAB / MSTV
 - ✓ Especially for Set Top Reception
- ✓ Transmitter Diversity
 - ✓ Fills Holes in Difficult Propagation Channels
 - ✓ Helps Set Top Reception
 - ✓ Helps Pedestrian & Mobile Reception
- ✓ But, More Difficult for Receiver Equalizers
 - ✓ Similar to Difficult Reception Locations Using Single Xmtrs
 - ✓ DTx Offers Possibility to Overcome Many Such Difficulties

Background of Distributed Transmission

- ✓ Introduced in FCC Advisory Committee in 1991
 - ✓ Commission Then Sought Input
 - ✓ Never Acted
- ✓ Other Systems Adopted SFN Techniques
 - ✓ DVB-T (Europe)
 - ✓ ISDB-T (Japan)
 - ✓ Used Lack of SFN to Sell Their Systems Against ATSC System
 - ✓In Brazil, for example
 - ✓ ATSC had no SFN methods

Background of Distributed Transmission (2)

- ✓ DTx Introduced to ATSC VSB Enhancement Process in 2000
- ✓ DTx Recommended by FCC Spectrum Policy TF Nov., 2002
- ✓ ATSC Standard Adopted July, 2004
 - ✓ Defines Synchronization of Transmitters (A/110)
- ✓ ATSC Recommended Practice Adopted September, 2004
 - ✓ Explains Design of Multiple Transmitter Networks (A/111)
- ✓ FCC Adopted DTx "In Principal" in 2nd DTV Periodic Review
 - ✓ Promised "Fast Track" NPRM September, 2004
- ✓ ATSC Forum Now Using DTx As Argument In Its Favor

Broadcaster Support

- ✓ NAB President Eddie Fritts March 30, 2004
 - ✓ "We need to provide services that exploit all the advantages of over-the-air transmission-and reach the greatest audience possible with a reliable, received signal. For example, ATSC's work on a standard for distributed transmission is commendable. The idea of synchronized multiple transmitters has the potential to help increase the reliability of over-the-air broadcast service."
 - ✓ Speech at ATSC Annual Meeting

Broadcaster Support (2)

- "The undersigned 32 organizations ... jointly urge the Commission to authorize quickly use of Distributed Transmission techniques in Digital Television (DTV) broadcast operations."
- ✓ Letter to FCC from 32 Organizations June 4, 2004
 - ✓ NAB
 ✓ Entravision
 ✓ Media General
 ✓ Reading
 - ✓ Tribune ✓ Cox ✓ Allbritton ✓ Winston
 - ✓ Liberty ✓ Emmis ✓ Meredith ✓ Southern Oregon
 - ✓ Paxson ✓ Penn State ✓ Clear Channel ✓ Longmont Chnl 25
 - ✓ Pappas ✓ Sinclair ✓ Bahakel Axcera
 - ✓ WB Network ✓ Pegasus ✓ Cascade Harris
 - ✓ LIN
 ✓ Morgan Murphy
 ✓ Holston Valley
 Thales

Prerequisites for DTx Operation

- ✓ Transmitter Outputs Must Be Synchronized
 - ✓ Same Emitted Symbols for Same Data Input
 - ✓ Precise Frequency Control of Transmitters
 - ✓ Allows Treating Alternate Signals as Echoes
 - ✓ Allows Controlled Network Output Timing
- ✓ Capable Receiver Adaptive Equalizers
 - ✓ Must Treat Alternate Signals as "Echoes"
 - ✓ Must Handle Strong Leading Echoes
 - ✓ Wide Equalization Range (Pre- & Post-Cursor)

Example: Terrain-Obstructed w/Single Xmtr

Example: Distributed Transmitters Added

Example: Los Angeles High Desert Unserved

Example: Los Angeles w/High Desert Service

Example: Philadelphia Single High-Power Tx

Example: Philadelphia Multiple Low-Pwr Txs

Example: Philadelphia IX to Adjacent Chnl

Example: Philadelphia DTx IX to Adj Chnl

Example: Philadelphia IX from Adj Chnl

Example: Philadelphia DTx IX from Adj Chnl

Example: Philadelphia DTx Improved IX

FCC Interests in Setting DTx Rules

- ✓ FCC Interest in Maximizing Spectrum Efficiency (SPTF)
- ✓ Allowing Stations to Expand Service Areas
 - ✓ Maximizing Spectrum Efficiency by Delivering Greatest Service
 - ✓ Simultaneously Minimizing Additional Interference
- ✓ Permitting Broadcasters to Compete with Cable
 - ✓ Requires Set Top Reception, Hence Strong Signals
 - ✓ Requires Signals Delivered Wherever Carried on Cable
 - ✓ Service Limited by Smallest Aggregated Footprint of Stations
 - ✓ Current Rules Require Must-Carry Throughout DMA

FCC Interests in Setting DTx Rules (2)

- ✓ Market Sizes Vary Across the Country
 - ✓ Generally Smaller in the East
 - ✓ Generally Larger in the West
- ✓ Broadcasters Concerned About Adjacent Market Encroachment
 - ✓ Could Occur with Large Service Area & Small DMA
- ✓ Optimum Balance is Maximum Service within Station's Market
 - ✓ Permit Maximization with Minimal Constraints
 - ✓ Limited by Market Boundaries (DMA)
 - ✓ Limited by Interference to Other Stations

Required / Proposed Rule Changes

- ✓ Primary Treatment of Distributed Transmitters
 - ✓ Inclusion in Part 73 vs Part 74 in most instances
 - ✓ No Additional Spectrum Allotment Required
 - ✓ Protect Distributed Xmtr Service Area Same as Main Service
 - ✓ When Distributed Xmtrs Provide Part of Main Service
 - ✓ Filling Gaps in Coverage, Creating Hot Spots
 - ✓ Maximizing Service Area and Population
- ✓ Permit DTV Coverage Area Extensions
 - ✓ More Effective Service Maximization
 - ✓ Proposal for 50% Extension In Each Direction
 - Distributed Xmtrs Located Within Reference Contours
 - ✓ Population Increase Limited Outside Licensee's DMA

Required / Proposed Rule Changes (2)

- ✓ Limits for Main Stations Apply to Distributed Xmtrs
 - ✓ Power
 - ✓ Antenna Height
 - ✓ de minimis Interference Analysis Serves as Constraint
 - ✓ Same As Single-Tx Facilities After Freeze Is Lifted
- ✓ Locations of Distributed Transmitters
 - ✓ Within Hypothetical Maximized Service Contour
 - ✓ Within Designated Market Area (DMA)
 - ✓ Whichever Extends Farther in Any Given Direction

Required / Proposed Rule Changes (3)

- ✓ Service Areas Permitted
 - ✓ Always Limited by de minimis Rules
 - ✓ Four Choices Provided in Filed Comments
 - ✓ Limitations of Service Contours
 - ✓ Maintain Interference Contours Within Hypothetical IX Contour
 - ✓ Avoiding Encroachment Into Neighboring DMAs
 - ✓ More Than ½ of Population Served Must Be Within DMA
 - ✓ Evaluated for Each Distributed Transmitter
 - ✓ When Extending Outside Hypothetical Maximized Service Contour

Required / Proposed Rule Changes (4)

- ✓ Eliminate Constraints of Analog Service Rules
 - ✓ Analog Booster Rules Required Contours within Contours
 - ✓ Before Modern IX Analysis Methods Were Available
- ✓ Interference Analysis Methods Extended
 - ✓ Modifications to Current Techniques / Software
 - ✓ Addition of 1 Field to FCC Database Records
 - ✓ FCC Software Supplier Involved in Developing These Extensions